Networking Basics

A network is a group of computers, printers, and other devices that are connected together with cables. The sharing of data and resources. Information travels over the cables, allowing network users to exchange documents & data with each other, print to the same printers, and generally share any hardware or software that is connected to the network. Each computer, printer, or other peripheral device that is connected to the network is called a node. Networks can have tens, thousands, or even millions of nodes.

Cabling:

The two most popular types of network cabling are twisted-pair (also known as 10BaseT) and thin coax (also known as 10Base2). 10BaseT cabling looks like ordinary telephone wire, except that it has 8 wires inside instead of 4. Thin coax looks like the copper coaxial cabling that’s often used to connect a VCR to a TV set.

Network Adapter:

A network computer is connected to the network cabling with a network interface card, (also called a “NIC”, “nick”, or network adapter). Some NICs are installed inside of a computer: the PC is opened up and a network card is plugged directly into one of the computer’s internal expansion slots. 286, 386, and many 486 computers have 16-bit slots, so a 16-bit NIC is needed. Faster computers, like high-speed 486s and Pentiums, , often have 32-bit, or PCI slots. These PCs require 32-bit NICs to achieve the fastest networking speeds possible for speed-critical applications like desktop video, multimedia, publishing, and databases. And if a computer is going to be used with a Fast Ethernet network, it will need a network adapter that supports 100Mbps data speeds as well.

Hubs

The last piece of the networking puzzle is called a hub. A hub is a box that is used to gather groups of PCs together at a central location with 10BaseT cabling. If you’re networking a small group of computers together, you may be able to get by with a hub, some 10BaseT cables, and a handful of network adapters. Larger networks often use a thin coax “backbone” that connects a row of 10BaseT hubs together. Each hub, in turn, may connect a handful of computer together using 10BaseT cabling, which allows you to build networks of tens, hundreds, or thousands of nodes.
Like network cards, hubs are available in both standard (10Mbps) and Fast Ethernet (100Mbps) versions.

LANs (Local Area Networks)

A network is any collection of independent computers that communicate with one another over a shared network medium. LANs are networks usually confined to a geographic area, such as a single building or a college campus. LANs can be small, linking as few as three computers, but often link hundreds of computers used by thousands of people. The development of standard networking protocols and media has resulted in worldwide proliferation of LANs throughout business and educational organizations.

WANs (Wide Area Networks)

Often a network is located in multiple physical places. Wide area networking combines multiple LANs that are geographically separate. This is accomplished by connecting the different LANs using services such as dedicated leased phone lines, dial-up phone lines (both synchronous and asynchronous), satellite links, and data packet carrier services. Wide area networking can be as simple as a modem and remote access server for employees to dial into, or it can be as complex as hundreds of branch offices globally linked using special routing protocols and filters to minimize the expense of sending data sent over vast distances.

Internet

The Internet is a system of linked networks that are worldwide in scope and facilitate data communication services such as remote login, file transfer, electronic mail, the World Wide Web and newsgroups.
With the meteoric rise in demand for connectivity, the Internet has become a communications highway for millions of users. The Internet was initially restricted to military and academic institutions, but now it is a full-fledged conduit for any and all forms of information and commerce. Internet websites now provide personal, educational, political and economic resources to every corner of the planet.

Intranet

With the advancements made in browser-based software for the Internet, many private organizations are implementing intranets. An intranet is a private network utilizing Internet-type tools, but available only within that organization. For large organizations, an intranet provides an easy access mode to corporate information for employees.

Ethernet

Ethernet is the most popular physical layer LAN technology in use today. Other LAN types include Token Ring, Fast Ethernet, Fiber Distributed Data Interface (FDDI), Asynchronous Transfer Mode (ATM) and LocalTalk. Ethernet is popular because it strikes a good balance between speed, cost and ease of installation. These benefits, combined with wide acceptance in the computer marketplace and the ability to support virtually all popular network protocols, make Ethernet an ideal networking technology for most computer users today. The Institute for Electrical and Electronic Engineers (IEEE) defines the Ethernet standard as IEEE Standard 802.3. This standard defines rules for configuring an Ethernet network as well as specifying how elements in an Ethernet network interact with one another. By adhering to the IEEE standard, network equipment and network protocols can communicate efficiently.

Protocols

Network protocols are standards that allow computers to communicate. A protocol defines how computers identify one another on a network, the form that the data should take in transit, and how this information is processed once it reaches its final destination. Protocols also define procedures for handling lost or damaged transmissions or “packets.” TCP/IP (for UNIX, Windows NT, Windows 95 and other platforms), IPX (for Novell NetWare), DECnet (for networking Digital Equipment Corp. computers), AppleTalk (for Macintosh computers), and NetBIOS/NetBEUI (for LAN Manager and Windows NT networks) are the main types of network protocols in use today.
Although each network protocol is different, they all share the same physical cabling. This common method of accessing the physical network allows multiple protocols to peacefully coexist over the network media, and allows the builder of a network to use common hardware for a variety of protocols. This concept is known as “protocol independence,” which means that devices that are compatible at the physical and data link layers allow the user to run many different protocols over the same medium.

Topologies

A network topology is the geometric arrangement of nodes and cable links in a LAN, and is used in two general configurations: bus and star. These two topologies define how nodes are connected to one another. A node is an active device connected to the network, such as a computer or a printer. A node can also be a piece of networking equipment such as a hub, switch or a router. A bus topology consists of nodes linked together in a series with each node connected to a long cable or bus. Many nodes can tap into the bus and begin communication with all other nodes on that cable segment. A break anywhere in the cable will usually cause the entire segment to be inoperable until the break is repaired. Examples of bus topology include 10BASE2 and 10BASE5.
10BASE-T Ethernet and Fast Ethernet use a star topology, in which access is controlled by a central computer. Generally a computer is located at one end of the segment, and the other end is terminated in central location with a hub. Because UTP is often run in conjunction with telephone cabling, this central location can be a telephone closet or other area where it is convenient to connect the UTP segment to a backbone. The primary advantage of this type of network is reliability, for if one of these ‘point-to-point’ segments has a break, it will only affect the two nodes on that link. Other computer users on the network continue to operate as if that segment were nonexistent.

Peer-to-Peer Networks

A peer-to-peer network allows two or more PCs to pool their resources together. Individual resources like disk drives, CD-ROM drives, and even printers are transformed into shared, collective resources that are accessible from every PC.

Unlike client-server networks, where network information is stored on a centralized file server PC and made available to tens, hundreds, or thousands client PCs, the information stored across peer-to-peer networks is uniquely decentralized. Because peer-to-peer PCs have their own hard disk drives that are accessible by all computers, each PC acts as both a client (information requestor) and a server (information provider). A peer-to-peer network can be built with either 10BaseT cabling and a hub or with a thin coax backbone. 10BaseT is best for small workgroups of 16 or fewer users that don’t span long distances, or for workgroups that have one or more portable computers that may be disconnected from the network from time to time.

After the networking hardware has been installed, a peer-to-peer network software package must be installed onto all of the PCs. Such a package allows information to be transferred back and forth between the PCs, hard disks, and other devices when users request it. Popular peer-to-peer NOS software includes
Most NOSs allow each peer-to-peer user to determine which resources will be available for use by other users. Specific hard & floppy disk drives, directories or files, printers, and other resources can be attached or detached from the network via software. When one user’s disk has been configured so that it is “sharable”, it will usually appear as a new drive to the other users. In other words, if user A has an A and C drive on his computer, and user B configures his entire C drive as sharable, user A will suddenly have an A, C, and D drive (user A’s D drive is actually user B’s C drive). Directories work in a similar fashion. If user A has an A & C drive, and user B configures his “C:WINDOWS” and “C:DOS” directories as sharable, user A may suddenly have an A, C, D, and E
drive (user A’s D is user B’s C:WINDOWS, and E is user B’s C:DOS). Did you get all of that?

Because drives can be easily shared between peer-to-peer PCs, applications only need to be installed on one computer–not two or three. If users have one copy of Microsoft Word, for example, it can be installed on user A’s computer–and still used by user B.

The advantages of peer-to-peer over client-server NOSs include:
· No need for a network administrator
· Network is fast/inexpensive to setup & maintain
· Each PC can make backup copies of its data to other PCs for security. By far the easiest type of network to build, peer-to-peer is perfect for both home and office use.

Client-Server Networks

In a client-server environment like Windows NT or Novell NetWare, files are stored on a centralized, high speed file server PC that is made available to client PCs. Network access speeds are usually faster than those found on peer-to-peer networks, which is reasonable given the vast numbers of clients that this architecture can support. Nearly all network services like printing and electronic mail are routed through the file server, which allows networking tasks to be tracked. Inefficient network segments can be reworked to make them faster, and users’ activities can be closely monitored. Public data and applications are stored on the file server, where they are run from client PCs’ locations, which makes upgrading software a simple task–network administrators can simply upgrade the applications stored on the file server, rather than having to physically upgrade each client PC.

In the client-server diagram below, the client PCs are shown to be separate and subordinate to the file server. The clients’ primary applications and files are stored in a common location. File servers are often set up so that each user on the network has access to his or her “own” directory, along with a range of “public” directories where applications are stored. If the two clients below want to communicate with each other, they must go through the file server to do it. A message from one client to another is first sent to the file server, where it is then routed to its destination. With tens or hundreds of client PCs, a file server is the only way to manage the often complex and simultaneous operations that large networks require.

Computer Networking is the very important and the crucial part of the Information Technology. Millions of the computers are networked together to form the Internet. Networking plays a important role in every kind of organization from small to medium sized, in Banks, Multinataional Companies, Stock Exchanges, Air Ports, Hospitals, Police Stations, Post Offices, Colleges, Universities, and even in home, in short networking plays an important role everywhere where computers are used. This article will be interesting for the students, network professionals and for the people who are interested in the computer networking

Social Networking Information – What Is It Saying About Network Marketing?

Social Networking Information available to networkers is telling them that networking has changed. Why don’t they listen? Because most network marketing professionals still believe that networking is pressing the flesh. Why? Because network marketing has not yet embraced social media as a legitimate form of personal communication.

Isn’t it amazing that Network Marketers, who have changed the way Millions purchase products and make a living, don’t seem to “get it” that a fundamental change has taken place in the way people network.

Who can blame them? Just a few short years ago networking meant going to a business mixer or picnic with family and friends. While network marketing companies have been working overtime to understand and to implement social media marketing into their systems, it just has not happened; yet.

However, it will. The sheer number of people online and the demographics of those user will bring social network marketing into the networkers business development plan – especially when they realize they can use social media while their prospects sleep. So what is social network marketing and how can you use it?

Believe it or not social networking is natural networking, actually, a lot more natural than meeting presentations. Why do I say such a thing? In an effective meeting presentation the audience is influenced 7% by what is said, 38% by how it is said and 55% by physical visual presence. Thus the saying, “people hear you music not your words.”

Online it’s a different ball game. Your audience does not see or hear your presentation. In fact, there is no presentation. If you try to present to your online audience they click you out of their life. This will change as the demographics of the online audience change and video becomes more sophisticated. However, for now you don’t present or sell to your audience; you communicate and build a relationship.

How can you “naturally network” on the Internet. Instead of smiling, nodding and promising, as you might do in a face to face situation, online you find out what people need and help them get it. That’s why, I believe, that the industry will become even more attractive to stay at home moms and women in general. Sorry guys, nothing personal, however, you just don’t communicate as well as women do. Currently about 85% of the Direct Selling?Network Marketing industries independent distributors are women.

Did you know that the fastest growing user category on Facebook, which has over 500,000,000 users, is women 55 to 65 years old. Why? That’s a whole article in itself, however, one reason is that the Baby Boomers want to re-kindle and form new relationships and social media is providing them with just the vehicle they are looking for.

However, the Baby Boomers are only a small segment of the changing networking landscape. Did you that in 2010 generation Y outnumbered the Baby Boomer generation. They grew up online and would rather text than talk.

O.K. what do you do? Sorry, I can’t offer you a magic bullet or quick fix that will transition you to a social networking superstar? It just doesn’t work that way. It’s a process. Here is how the process works:

You want to establish a presence as a contributing community member who cares and provides something of value, other than your opportunity, at Facebook and Twitter.

You want to create a YouTube channel and provide personal prepared video clips that offer something of value and an opportunity to meet you in person, so to speak.

Yes, you want to have a business Website which is current and professional.

And you want to start a blog which you post to consistently.

The five elements act as the funnels to draw people through your Blog to you and your offer. See this isn’t going to be that tough. You just need to be consistent and real.

Building a Quality High Performance Professional Network in the “Knowledge” Economy

In the knowledge-rich society and professional world we live in, building a quality high performing professional network should be a focus for every professional knowledge worker. More than ever, we need to be connected and integrated in communities that provide mutual value. It is no longer enough to have a network consisting of all the people you meet at conferences, through work or at other events.

We need to pro-actively develop and manage our professional network as an integral part of our career management in the knowledge economy. This is far more than just having the inter-personal skills to talk to people and make meaningful contact that can grow into lasting professional links. Having these skills is great, and we need them. But managing our professional network needs to go beyond that.

  1. We need to be able to ascertain the quality and performance of our professional network.
  2. We need to know what the strengths and weaknesses are of our current network.
  3. We need to know how to pro-actively manage our network to ensure we prepare for the next step in our career.

In order to do all of this we need to understand how knowledge is generated and shared in societies. We also need to understand how different kinds of people fulfill different requirements for knowledge. And, importantly, we need to know what our strengths are in professional networking.

When we look at our current professional network, we need to be able to identify strengths and weaknesses, and have a road map of how to improve and refine our professional network to serve us best, and also optimize value for all other members of our network.

Just like we suffer from an information overload in the current online and knowledge-rich world, we can end up having a large number of people that we know, but we do not derive the value that we could from the network because it is not suitable for our career, or is so overloaded that we are not able to have focused contact. We can end up wasting time by increasing the size of our network without really improving its quality and performance in our career or for anybody else in the network. If we allow that to happen, we also do not do others a service, because we all become numbers in one another’s professional networks rather than a well-functioning community that add value for one another.

There are more and more online tools and facilities that enable us to build global professional links and networks. The aim is not to participate in as many of them, or even to have as many contacts as possible. Rather, we need to utilize these wisely in order to build meaningful and useful professional networks that will become an integral part of the success of our careers.

Most courses (and online courses), as well as other information about professional networks focus on the inter-relational and social skills we need to build good links with others. These are important, but do not necessarily mean we’ll end up with a good professional network. Information on how to ensure quality and optimize value from the network for all participants is not readily available.

However, a quality, well-designed and high performance professional network is imperative in the knowledge economy.